
ROBUST PERFORMANCE OF AUTONOMOUS ROBOTS IN UNSTRUCTURED ENVIRONMENTS

Brandon Rohrer

Sandia National Laboratories: MS 1010, PO Box 5800, Albuquerque, NM 87185-1010, brrohre@sandia.gov

The problem of navigating in and interacting with an

unstructured environment presents challenges to

traditional learning and control approaches. However,

the nature of emergency response situations requires that

autonomous robots’ performance be robust to unmodeled

environments and unexpected challenges. One approach

to providing this capability is presented here: S-Learning.

S-Learning, an experience-based learning algorithm,

is implemented in the control of a seven degree-of-

freedom robotic arm. S-Learning stores sequences of

discretized (discrete in time), quantized (discrete in

magnitude), and categorical (uninterpreted) sensor data

and actuator commands. Handling the data in this way

removes explicit models about the environment, robot

kinematics, dynamics, and structure. Instead, a

bootstrapped model is generated on the fly by observing

sequences of sensory and command events. S-Learning is

based on a neuro-psychological model of learning and

movement control in humans and seeks to mimic the

strategies used by the brain to solve this problem.

I. INTRODUCTION

Emergency response environments are rarely well-

characterized, level, and free from obstruction. The

ability of an autonomous robot to handle novel

environments is essential to robust performance in an

emergency situation. Additionally, the very

environmental hazards that require robotic intervention

(e.g. unstable rubble, sharp debris, explosive materials,

radiation) can damage the robot. Ideally, robot

responders would be robust to failed sensors, frozen

actuators, misaligned cameras, and joint obstructions to

the greatest degree possible. This work describes a robot

control algorithm designed to achieve this goal.

The field of “learning to learn,” also termed

generalization or bias learning, takes machine

performance a step further than many learning

algorithms.
1
 Generalization algorithms seek to improve

system performance not just on tasks for which the

systems have explicitly trained, but also on novel,

unrelated tasks. Humans are often able to learn a task

after only one or two exposures due to the ability to

generalize from previously learned tasks. Generalization

algorithms attempt to imbue automated systems with this

same ability. Common approaches include connectionist

networks,
2,3
 statistical (including Bayesian, memory-

based, and Markovian) methods,
4,5,6

 dimensionality

reduction,
7
 and modified reinforcement learning

techniques.
8,9
 Within this set of generalization

algorithms, a subset is explicitly biologically-motivated.

These mimic the human brain, which serves as an

existence proof for solutions to daunting perception and

control problems. S-Learning falls into this category.

I.A. Relation to Temporal-Difference techniques

S-learning is a variant of temporal-difference (TD)

learning. It is superficially similar to Q-learning,
10

another TD algorithm, but involves sequences of discrete

events (hence the S). TD algorithms are typically

effective at discovering optimal sequences of actions in

unknown environments. However, existing algorithms

only address the static TD problem, in which the states

that result in reward or punishment are fixed. This is

equivalent to a control system that has a fixed goal that

does not vary over time. And while multiple instances of

a static TD algorithm, such as Q-learning, can be

employed to account for multiple goal states, the

experience gained while training one does not transfer to

others in a straightforward way. Such an approach

typically requires a separate training period for each

instance of the algorithm. Even when this multiple-

instance approach is successful, it still does not aid the

system in reaching unfamiliar goal states.

The distinguishing characteristic of S-learning is that

it continually records recurring patterns to build a library

of past experiences. This library allows a goal-seeking

agent to piece the patterns together to form a complete

path to a goal. The strength of this approach is that the

goal can be any previously-visited state, not just one or a

few that were hard-coded from the start. Thus S-learning

can also handle changing goals, multiple goals, and even

conflicting goals and provides a potential solution to the

dynamic TD problem.

I.B. Relation to Markov Models

In an S-Learning sequence library, a set of sequences

of length two can be accurately represented in a Markov

model. The likelihood of transitioning from state A to

state B can be inferred from the sequence set and could

alternatively be represented in matrix form. Similarly,

longer sequences could be represented as higher-order

Markov models. It is accurate to describe an S-Learning

sequence library as a shorthand way of representing a

series of Markov models of order one to order N-1, where

N is the maximum sequence length. The advantage of a

sequence library is that it is concise. A first order Markov

model in a system with M possible states can be

represented by a M x M matrix, a second order Markov

model by a M
 2
 x M matrix, and an N-1 order Markov

model by a M
 N-1

 x M matrix. For the system simulated in

this paper, in which N = 7 and M = 2
4141

, this

representation quickly becomes computationally

burdensome. In this sense, a sequence library is a sparse

matrix coding for a multi-order Markov model.

II. METHOD

Note: A description of the S-Learning algorithm has

been previously published, e.g.
 11
, but is briefly presented

here for clarity.

Initially, the controller has no experience on which to

draw. In simulation, the S-Learning algorithm issues

random commands until the goal is achieved, at which

point it resets the simulation and attempts to complete the

task again. Each time the goal is achieved, the sequence

of states (sensor readings and commands issued) leading

up to the goal are stored in a sequence library. Each

sequence can be envisioned as a trail of discrete states that

result in a goal. During future attempts, each state

encountered during exploration is compared against

previous successful state-trails. If there is a sufficiently

close match, S-Learning issues the same sequence of

commands that had previously proved successful.

II.A. Architecture

S-Learning is at the core of a biomimetic Brain-

Emulating Cognition and Control Architecture (BECCA,

Fig. 1). BECCA consists of an Agent, a Planner, a World,

and an S-Learning Engine, each of which is briefly

described below.

II.A.1. Agent

The Agent sets goals for the system. The goals are

expressed in terms of the sensory state information

available from the World. Goals can be a specific state, a

set of states, or a portion of a state. Multiple, even

conflicting, goals can exist. Goals can change over time,

and the Agent can use new state information to decide

when and how to change them. The current set of goals is

available for use by the Planner.

Fig. 1. Brain-Emulating Cognition and Control

Architecture (BECCA), featuring S-Learning: a block

diagram representation. The S-Learning algorithm is used

as an engine to bootstrap a model of the World. This

model is referenced by the Planner and uses new state

information to refine its World model in order to achieve

goals provided by the Agent.

II.A.2. Planner

The Planner determines which (if any) actions to take

at any given point in time. It takes in goals from the

Agent and current state information to inform its

decisions. The Planner queries the S-Learning Engine in

order to predict the results of possible courses of action.

Exploratory actions are also considered, particularly if the

current state is unfamiliar and the S-Learning Engine

cannot predict a path to a goal state. After a course of

action is determined, the Planner issues commands to the

World and reports those actions in a state vector.

II.A.3. World

The World is the external system that is being learned

and controlled. It is analogous to the Plant and

environmental disturbances in classical control system

formulations. The World can either be simulated or

instantiated in hardware, but in either case, the only

information it provides back to the rest of BECCA is

through its sensors. In simulations, BECCA does not

have direct access to the World's internal and state

variables.

II.A.4 S-Learning Engine

The S-Learning Engine uses the regularly-updated

stream of state information to bootstrap a model of the

World. There is no explicit model, assumed dynamics, or

implied structure. Instead, the S-Learning Engine

observes repeated state sequences, particularly those that

result in a goal state. These state sequences are stored in

a library, which is referenced by the Planner during action

planning. The S-Learning Engine also keeps track of the

sequences that the Planner selects as action plans. If a

sequence leads to a goal, as predicted, it is reinforced by

weighting more heavily in the sequence library. If a

sequence fails to lead to a predicted goal, its weighting in

the library is reduced. After a number of failed

predictions, a sequence becomes sufficiently weak that it

is removed from the library.

II.B. S-Learning Algorithm

S-Learning provides a single mechanism for handling

learning, memory, and prediction in BECCA. The

learning and memory behavior of S-Learning emerge

from the way new states are incorporated into the

bootstrapped world model. Initially, the sequence library

has no prior experiences and contains no state sequences.

When a goal state is achieved (presumably though the

exploratory efforts of the Planner) the sequence of events

leading up to the goal are stored in the library.

Control in S-Learning is straightforward. All

sequences that contain the most recently observed state(s)

and terminate in a goal state are candidates for plans. The

Planner selects one plan from the candidate set (if there is

more than one) on the basis of some criterion, say

distance to goal or past success rate.

Other, more sophisticated control methods based on

the sequence library are possible as well. For instance,

daisy-chaining sequences together, creating trees of

possible plans, would allow the Planner to create novel

plans and generate a series of sub-goals.

If the Planner finds an appropriate sequence from the

library to serve as a basis for a plan of execution, then it

executes the sequence of commands contained in that

sequence. The planner has an expectation that a goal will

be achieved at the end of that sequence. If a goal is not

achieved when expected, that sequence of events is

appended to the library, allowing future prediction of the

same failure.

If a goal is achieved when expected, then the

successful sequence is compared against the sequence

library. If the observed sequence is significantly different

from any sequence in the library, the observed sequence

will be appended to the library.

II.C. Simulation

S-Learning was implemented in a simulated seven

degree-of-freedom robot arm, based on physical

PowerCube hardware (Amtec GmbH, Germany).

MATLAB (Mathworks, Natick, MA) served as the

computation engine for the simulation. The robot

consisted of six serial rotary links, which terminated in a

parallel-finger gripper. (Fig. 2) The robot was mounted

on a table, within reach of a salt shaker-sized block.

The simulation consisted of two parts, a physical

contact model and a visual representation. In both cases,

each link of the robot was treated as a rigid body, and its

position relative to the other links was described

completely by the kinematic constraints and position of

each joint. Due to the high mechanical impedance and

non-backdrivability of the joints, links were considered to

Fig. 2. The PowerCube robot arm a) in a photograph and

b) in an image captured from the MATLAB simulation.

have no inertia; inertial effects were negligible in

determining movement dynamics. As a result, the set of

seven joint positions provided a complete state

description of the arm. The visual representation of the

model showed the configuration of the arm in the current

state in relation to the target block.

The physical contact model used of a number of

discrete spheres to represent the physical volume

occupied by each rigid link. When the contact spheres

from one link impinged on those of another, contact

forces were generated. These forces were computed over

the entire link and propagated, link by link, down the

kinematic chain to the base. If the forces or torques at

any given joint exceeded a threshold in the direction of

that joint’s movement, they prevented the joint from

moving against that load. The net effect of this was that

the arm was not capable of driving its gripper into the

table, or of “crushing” the target block.

Discrete commands were issued to each joint

consisting of a position (angle) step in one of 33

magnitudes. This yielded 33
7
 (>10

10
) possible commands.

The commands were checked to ensure that they did not

attempt to drive any joint past its position limits. This

approach was motivated by the physical hardware;

discrete position commands are also the accepted

command format for the actual PowerCube arm. When a

command was issued, a small amount of stochastic

command noise was added, resulting in a non-

deterministic system. This jitter provided a means of

exploring a local neighborhood of the state space. In

addition, when a sequence of commands was being

executed, two subsequent commands would, on random

occasions, be executed simultaneously. This

“carelessness” served to drive learned sequences toward

their optimal length. If a learned sequence could be made

shorter, it eventually would be.

II.C.1. Handling sensory information

The vector of sensory information supplied to the

World Model contained joint position, a “goal achieved”

flag, and coarse vision from a fixed overhead camera.

(Table I) All of the sensor data used in simulation is

readily available on the physical robotic hardware

platform. In all, there were over 4000 sensor channels

feeding information to the S-Learning Engine at each time

step. Each sensor channel carried a 1 (signifying

“active”) or a 0 (signifying “inactive”), making them

superficially similar to the afferent neurons that supply

sensory information to the brain.

Table I. Sensory Data Channels
Sensory

Modality

Number of

Channels

Vision: plan view of table 2500

Position: joint 1 600

Position: joint 2 300

Position: joint 3 200

Position: joint 4 200

Position: joint 5 200

Position: joint 6 100

Position: joint 7 40

Flag: goal achieved 1

Total 4141
The fact that S-Learning does not have a set

interpretation of its sensory information means that goals

were required to be expressed in terms of raw sensor data.

In the case of the PowerCube robot arm simulation, the

goal state was considered achieved when the gripper was

trying to close, but couldn’t (i.e., there was significant

positive current flowing to the actuator and significant

distance between the two fingers). In terms of the robot’s

simple set of sensors, this constituted a successful

gripping of the target. In the simulated environment,

there was only one object within the robot’s workspace

that could prevent the fingers from closing together—the

target block. If there had been a large number of

objects—if the target had been located on top of a pile of

other objects, for example—then additional sensors would

have to be consulted to determine whether the task had

been successfully achieved. But in this case (by design),

the sensors were adequately suited to the task.

With a sensory state space of 2
4141

 (>10
1240

) possible

states, exhaustive exploration of the space was

prohibitive. A random walk through the state space was

also unlikely to reach the target in reasonable time. Two

strategies were employed to handle the enormity of the

state space. First, a model-independent distance metric

for the space was used. For any two states, the fraction of

active channels that they shared determines their

similarity. More specifically, the similarity, σ, between

two states, A and B, was given by the number of shared

active channels, NS, divided by the least number of active

channels of the two states, min(NA, NB).

),min(BA

S

NN

N
=σ (1)

This similarity measure yielded a 0 if none of the

channels were shared, and a 1 if all the channels were

shared or if the active channels in one state were a subset

of the active channels in another. In the software

implementation, a threshold of σ = 0.93 was used as a

cutoff to determine whether two states were sufficiently

close to be considered a match for planning purposes.

This value was tuned empirically and was likely specific

to the particular system simulated.

The second strategy used to cope with the large state

space was to start with an easy task (i.e. success in the

task could be achieved with a random walk in reasonable

time) and to incrementally increase the difficulty as the

robot became more adept. In this way, the robot began

the task just outside the border of a familiar region of

state space. Each time the robot discovered a path to the

goal, this resulted in an incremental increase in the size of

the familiar state space. Initially, the robot’s position was

set such that it was prepared to grasp the target and only

needed to close its grippers. Each time the robot

successfully grasped the target, the task was reset. Once

the robot was able to successfully grasp the target more

than five times in 100 moves, the initial distance from the

target was increased. This process continued until the

maximum initial distance was achieved (shown in Fig. 3a,

first panel).

After a certain number of movements without

reaching the goal (in this case, 10), the task was reset, and

the arm was re-initialized to a starting position as

described above. This prevented the robot from spending

large amounts of time in the expanses of state space that

were far from the goal.

II.C.2. Task Progress

The initial starting position was characterized by a

quantity called “progress,” which ranged from 0 (at the

closest starting position) to 100 (at the maximum initial

distance). The heuristic by which progress is modified is

given by Eq. 2.

))2,(min(ˆ
tts nnnpp −+= α (2)

In Eq. 2, p̂ is the new progress value, p is the most

recent progress value, ns is the number of successful

target reaches in the last 100 movements, nt is a constant

threshold value, and α is a constant adaptation rate. In

this example, an nt of 5, and an α of 0.0025 produced

well-behaved, largely monotonic increases in p, but these

values are likely to be specific to this application and may

require adjustment for others. The effect of)2,min(ts nn

was to put a ceiling on the rate of change of p, preventing

large jumps into uncharted regions of the state space.

The initial starting position described by p was used

as an upper bound; it was the maximum distance that the

robot could use for an initial position at each task reset.

The actual starting position was randomly selected from

the positions corresponding to a uniform distribution over

the interval [0, p], often starting the robot within a

familiar region of the state space. This allowed

knowledge of the familiar portion of the state space to be

continually refined and renewed.

Two additional sources of stochastic variation

ensured that the state space was appropriately explored in

the neighborhood relevant to the task. Positional

variation in both the target and the robot joints were tied

to p, that is, the magnitude of the variation was 0 when p

= 0 and maximal when p = 100. The maximum

magnitudes of these positional variations were π/4000

radians in the robot joints and 20 cm in the x- and y-

positions of the target. The variations in joint position

provided only a slight positional jitter. The target position

variations were large enough to change the nature of the

task.

III. RESULTS

Initially, the simulated PowerCube arm moved

randomly, in an exploratory fashion. Its sequence library

was empty, as it had no previous experience. The S-

Learning algorithm had no basis upon which to form

plans for achieving its goal of grasping the target.

Typically, after resetting 5-20 times, the robot finally

discovered a sequence of movements that allowed it to

grasp the target. It repeated this, subject to the stochastic

variation inherent in its motor commands, until its task

progress was increased, pushing the robot’s initial

position out into an unfamiliar portion of the state space.

Again, the robot made random movements until it got

sufficiently close to a familiar position and was able to

reach the target again. This process repeated until the

robot was able to reach the target 5 times in 100 moves at

a task progress, p, of 100. A well-behaving reaching

movement from a fully-trained robot is contrasted with

random movements in Fig. 3.

Early in learning task progress increased relatively

rapidly. Then, later in the process, it slowed

considerably. (Fig. 4) This illustrates the increase in

difficulty with increased progress, attributable to

increased uncertainty in the robot’s initial position, the

target position, and the magnitude of movement

commands. As task progress increased, the magnitude of

variation in the robot’s initial position increased as well.

This occasionally resulted in the robot starting in

previously unvisited portions of the state space, requiring

additional learning time to reach the goal.

Increases in the magnitude of target position variation

resulted in a dramatic increase in task complexity. The

robot was, in effect, being presented with a family of

tasks rather than just one. Without target position

variation, vision information (the majority of the sensory

input) would have been superfluous and could have been

be ignored. However, when target position was varied,

vision information needed to be incorporated and

correctly applied to allow successful completion of the

task.

Finally, as longer sequences of movements were

required to reach the target, the cumulative stochastic

variation in those movements had a greater chance of

causing significant deviation from the desired end

position. While this was helpful in exploring the local

state space, it presented one more challenge to the

efficiency of the task performance.

Often, the robot was unable to reach the target 5

times within 100 movements. In these cases p was

decremented according to Eq. 2. The alternating

incrementing and decrementing of p resulted in a jitter

that can be seen superimposed on the general upward

progression of p.

The training time required to reach p = 100 for the

first time was approximately 280,000 movements,

although improvements in performance were still

apparent through 500,000 movements.

IV. DISCUSSION

The simulation presented here demonstrated the S-

Learning algorithm controlling a complex robotic arm to

achieve a specific task. The algorithm did not use any

information about the environment, or the nature of the

goal, or the size, range, or topology of the robot. It

contained no Cartesian representation of its workspace, no

explicit representation of joint angles, and no calibration

or interpretation of its rudimentary vision pixels. It

learned the relation between all these through self-

experimentation or “playing” in its environment.

Fig. 4. Progress of the robot performance over time.

“Progress,” as shown here, represents the average

distance from the target at which the arm will begin the

task. Initially, the arm was constrained to begin the task

very near the target, but as it achieved some success it is

gradually started further away. The maximal starting

distance, corresponding to progress of 100, is the starting

position shown in the first panel of Fig. 3a.

The training time shown of about one-half million

moves is not out of line with training time for skilled

human movements. Each attempt at the target consisted

of as many as ten moves, meaning that approximately

100,000 separate attempts on the target were made. This

compares favorably with the number of repetitions it takes

for humans to learn a task well. For example, significant

improvement in cigar-rolling performance is observed,

even after the one millionth cigar.
12

S-Learning is an extremely general learning approach.

The same S-Learning and BECCA algorithm shown here

could have been applied to stabilizing an inverted

pendulum, learning to grasp with a many degree-of-

freedom robotic hand, or steering an unmanned vehicle.

As long as the state contains appropriate sensor

information and the system has adequate actuation, S-

Learning can be used to learn its behavior, store it in

Fig. 3. Video frames from the animations of a) novice or

“newborn” reaching performance and b) experienced

reaching performance. In novice reaching, there was no

experience (i.e. no sequences stored in the S-Learning

Engine) to direct the arm to the target or to aid in the

interpretation of sensory inputs. After a body of

experience had been amassed, sequences linking the

initial state to the goal state was used to plan a path

through state space to the target.

memory, and recall it for use in control. Many other

methods have been used to control seven degree-of-

freedom robots; it is not a new control problem. The

significance of S-Learning accomplishing the task is that

it did so without knowing a priori how to interpret any of

its sensor data or how to reach its goal.

While S-Learning is in most respects a very general

tool, there are several parameters that were specifically

adjusted to produce desirable performance. In addition to

the constants identified in the description of the

simulation, the selection and quantization of sensory data

was found to be critical to the algorithm’s performance.

Using irrelevant sensory information can artificially

increase the dimensionality of the state space and dilute

the algorithm’s ability to identify similar states.

Quantizing sensory data too finely makes the state space

unnecessarily large. Quantizing sensor data too coarsely

can prevent the algorithm from distinguishing between

qualitatively different states. While the underlying

algorithm of S-Learning remains broadly applicable,

addressing a number of diverse applications, its

application must be engineered to a certain extent, fitting

it to the specific application at hand. This combination of

general and optimized tools is found in human

neurophysiology as well: brains are extremely general in

their capabilities and show remarkable plasticity, while

the structure, sensitivity, and distribution of sensory

neurons appears to be highly optimized. In future work it

may be feasible for S-Learning to implement evolutionary

algorithms to optimize the implementation-specific

parameters, modeling not just its ontologic development,

but also its phylogentic development on biological

processes.

By basing its function on observed

psychophsyiology, S-Learning is able to recreate some of

the salient features and strengths of human motor

behavior. This paper has demonstrated a simulation of S-

learning in a reaching task. However, the general nature

of the algorithm suggests that it may also be capable of

solving more complex motor control problems, including

grasp, bimanual manipulation, visual tracking, balance,

and bipedal locomotion. The absence of explicit models

makes S-Learning robust to changes in the environment

and changes in robotic hardware, such as sensor and

actuator failures, that are likely to occur in emergency

situations.

ACKNOWLEDGEMENTS

The generous technical and programmatic support of

Kristopher Klingler, Fred Rothganger, Larry Shipers, and

Patrick Xavier are gratefully acknowledged.

Sandia is a multiprogram laboratory operated by

Sandia Corporation, a Lockheed Martin Company, for the

United States Department of Energy under contract DE-

AC04-94AL85000.

REFERENCES

1. S. Thrun and L. Pratt, “Learning to Learn:

Introduction and Overview,” Learning to Learn, S.

Thrun and L. Pratt eds., Kluwer Academic

Publishers, pp.3-18, (1998).

2. L. Pratt and B. Jennings, “A Survey of Connectionist

Network Reuse Through Transfer,” Connection

Science, 8:2 (1996).

3. R. Caruana, “Multitask Learning,” Learning to

Learn, S. Thrun and L. Pratt eds., Kluwer Academic

Publishers, pp.95-134 (1998).

4. J. Baxter, “Theoretical Models of Learning to Learn,”

Learning to Learn, S. Thrun and L. Pratt eds.,

Kluwer Academic Publishers, pp.71-94 (1998).

5. D. Shepard, “A Two-dimensional Interpolation

Function for Irregularly Spaced Data,” Proc of the

23rd Association for Computing Machinery National

Conference, August 27-29 (1968).

6. J.B. Tenenbaum, “Bayesian Modeling of Human

Concept Learning,” Advances in Neural Information

Processing Systems 11, MIT Press, Cambridge, MA

(1999).

7. N. Intrator and S. Edelman, “Making a Low-

dimensional Representation Suitable for Diverse

Tasks,” Connection Science, 8:2 (1996).

8. J. Schmidhuber, J. Zhao, and N.N. Schraudolph,

“Reinforcement Learning with Self-Modifying

Policies,” Learning to Learn, S. Thrun and L. Pratt

eds., Kluwer Academic Publishers, pp.293-310

(1998).

9. R. Maclin and J.W. Shavlik, “Creating Advice-

Taking Reinforcement Learners,” Learning to Learn,

S. Thrun and L. Pratt eds., Kluwer Academic

Publishers, pp.311-347 (1998).

10. C.J.C.H. Watkins and P. Dayan, “Technical Note: Q-

Learning,” Machine Learning, 8:2-4, pp.279-292

(1992).

11. B. Rohrer, “S-Learning: A Biomimetic Algorithm for

Learning, Memory, and Control in Robots,” IEEE

EMBS Conference on Neural Engineering, Kohala

Coast, HI, May 2-5 (2007).

12. E.R.F.W. Crossman, “A Theory of the Acquisition of

Speed-Skill,” Ergonomics, 2:2 pp.153-166 (1959).

